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. Existing detailed hourly energy analysis programs do not D C&

adequately model the heat transfer between buildings
and the ground. A simple model of the ground heat
transfer compatible with both existing hourly energy
analysis programs and simpler building models is vital
as energy conservation technigues reduce the above-
ground heat loss and building-ground heat transfer
becomes more significant.

This study extends present techniques from the strictly
geometric context of the numerical solution methods to
the more conceptual environment of simplified models.
Specifically, these concepts are applied to the problem
of heat conduction through siab-on-grade surfaces.

Tested over a broad range of climatic conditions, the
multiple-input transfer function model calculates slab
heat flux. The accuracy of the model is dependent
upon the accuracy of the input data; however, some
reasonable approximations to the necessary input data
can give acceptable resuits.

The full capability of the model was not tested in this
study. Further work to develop a definition of the net-
work paraimeters based on characteristic length could
expand the use of the model to nonsquare and possnbly

even nonrectangular surfaces. ; , o S -~
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MULTIPLE-INPUT TRANSFER FUNCTION MODEL
OF HEAT TRANSFER FROM SQUARE SLAB FLOORS

1 INTRODUCTION

Existing detailed honrly energy analysis programs such as BLAST do
not ad-guately modal the heat transfer between buildings and the
ground. Although the model of the building can pe very complex, the
rdels of the bullding-ground heat transfer mechanisms are generally
inrongrucusly simple.  BLAST, for example, usges a one—-dimensional
response factor model with a single monthly 2verage grcund tempera-
ture to define all building-ground heat transfer. A simple model of
the ground heat transfer compatible with both existing hourly energy
ar.alysics programs and simpler building models becomes more vital as
ererqgy conservaticn technicues reduce the above-ground heat loss and

ruilding-grouna heat transfer becomes more significant.

Zeyvlan and Myers (1] developed a response-ccefficient methsd for

multidimensional heat conduction problems which is substantially more

Ly

efficient than finite-differeonce or finite-element methods. Addi-
ticnally, it provides a response coefficient model of the system
which can be used with any input data which can be approximated by a
continuous, piecewise linear function. Seem [2] developed a proce-
dure for calculating multidimensional transfer functions which elimi-
nates some of the computaticonally expensive steps of the Ceyvlan and
Myors method. These multidimensicnal methods have been applied to
strictly gcometric heat conduction problems. The objective of this
study 1s to extend these techniques from the strictly geometric
contoxt ot the murnerical solution methods to the more conceptual
envivonment of simpiiiied models. Specifically, these concepts will
pe applied to the preblem of heat conduction through slab-on-grade

surface: .

O T N R A oo Dy st er Mrermadynamics (BLAST) was developed by USACERL and
RN ' Pt oot ool dvtonse for military construction proiects.




2 CONCEPT

Many physical systems, including thermodynamic systems, can
be approximated using lumped-system analysis. 1In this
approach the system is described as a series of lumped, lin-
ear, dynamic elements defined by ordinary differential equa-
tions. The network analogy provides a simple visualization
of this concept. In a network model of a thermal system,
temperatures are represented by nodes with a linear tempera-
ture distribution between each pair of nodes. Physical
properties are considered to be uniform between each pair oi
nodes, but can vary from pair to pair. Energy balance equa-
tions are written for each node and the system of equations
sclved for unknown temperatures and heat fluxes. The
validity of the system model is dependent on the accuracy of
the assumptions of uniform temperature at each node and 1lin-

earity between nodes.

Without defining specific geometric or environmental proper-
ties, the matrices forming the energy balance equations ot
the nodes are constructed using state space representation

resulting in the state equation

o\ 4 (1)
— =3\ + Bl
EY,

and the output equation

Q=C\+DU (2)

The matrix \ contains the unknown temperatures (state

variables). ' is the matrix of known temperatures (input




variables). ( is the matrix of fluxes (output variables).
Matrices 4, B, C. and D are coefficient matrices. The
size of the matrices and the values of the elements will be
determined by the specific model. Once the coefficient
matrices are defined and the input values identified, the
first ordur differential equations can be solved. The
method of Seem [2] is used to solve the system of equations.
In this formulation, the time series of input variables is
modelled as a continuous piecewise linear function by the

equation

(v-1) (3)
b

L(o)y=0,+ (U .~ U)

Using this function for the inputs, the differential
equations are solved, and substituted for X into the
equation (2) resulting in an equation relating the system
outputs to the system inputs. This equation is known as the

transfer function equation and is of the form

n n, (4)
Q=) (S,U.,5)- Lo(e,o,-,-b)
]1=0 1=

where

I

Q.

N
S

vector of output variables (heat flux) at time i

; transfer function matrix for temperature inputs

at time j
j = designator identifying a point in time, where j=0 is the
current time, j=1 is one time step prior to the current

time and so on




t = time of interest
b = time step
I, = vector of input variables (known temperatures)
at time i
e = scalar constant for adjusting the effect of previous

outputs on the output at the time of interest.

A transfer function is defined as the ratio of the output
variables of a system in state space to its input variables
(also in state space). In this way, the transfer function
represents the dynamics of a linear time-invariant system.
The transfer function matrices are dependent on the system
and inputs, but only on the functional form of the inputs:
therefore, any input which can be adequately modelled by the
continuous piecewise linear function noted above can be used
with the transfer function matrices to model its effect on
the system. This is particularly useful in the modelling of
building systems where the input conditions of climate are
unpredictable and highly variant in time and geographic

location.




3 MODEL DEVELOPMENT
3.1 ETRUCTURE

The system modelled for this study is a square slab-on-
grade. The model proposed is a 7 node network with 3 state

variables and 4 inputs [Figure 1].

Figure 1: 7 Node Network Model

e

f D 3

/

The known temperatures (or inputs) are the daily average
slab core region temperature (7,), the daily average slab




edge region temperature (7,), the daily average ground sur-
face temperature (7 ,) and the deep ground temperature (7,).
The 3 state variables, the temperatures at the remaining
nodes (T,. T,. T3), are allowed to float and consequently
have some thermal capacitance attributed to them. The tem-
perature nodes are related to each other as shown in the
figure. Between attached pairs of temperature nodes, there
exists some thermal resistance. The definition of these

resistances and capacitances is discussed in Section 3.2.

3.2 BASIC EQUATIONS

BASIC EQUATIONS Energy balance equations are written for

each node resulting in 4 state equations of the form

oT, & o (5)
C,—=) G, (T,-T)

t t &

for i = 1 to 4, and 3 state output equations of the form
. (6)
Q.= ) 6,(T,~T)
J=1
for i = 1 to 3, where
(C, = thermal capacitance at node T,

-~ 1
(, = —
it R“

= inverse of the thermal resistance between
nodes 7/, and /,

These 7 equations can be written more conveniently in matrix
form




22 (7)

—=2\V+BU
ot
and
Q=CX+DU (8)
where
oT, (9)
ot
aA _ ol ,
ol ot
a7-3
ol

T, (10)
x=| 7,
T, |
T, (11)
T,
v-l 4
T,

Qs (12)




~Guw=612-6G oy G2 0 (13)
C, C,
q-= (;12. —C)e GIZ_GZS_GZd 9_33
’ C, C, C,
0 9_23 ‘G:;/'"st'Gad
C3 C3‘
G G\, (14)
‘lb O ‘ll O
C, C,
Cou Cae
B=| 0 0 24 22
C, (5
C G,
o 2 2 9
Cy Cy
Gy, O 0 (15)
0 0 Gay
C= . .
(’ld (’2(1 (;'Jd
0 G, 0
/G, Cy, 0 0 Gy (16)
o 0 -C,,~C,, 0 G,
- 0 0 -G 4~ Caq=Cay 0
(;fiv Co[ 0 _Cbe—ce/ 622

The coefficient matrices A4, B, C, and D define the
relationships of all temperature regions in the system to
all others. They involve geometric factors such as the area
through which heat is transferred from one region to
another, and physical properties such as the density and
thermal conductivity of various regions. The goal of
defining the elements of the coefficient matrices is to make
it possible to generate transfer function equations for any
system from its basic physical parameters rather than as is
frequently done in electro-mechanical systems ~ by testing




the system itself. Because the important aspect of the
equations is the thermal relationships between regions, the
model is not strictly geometric.

The first step in defining the matrix coefficients is iden-
tifying the properties which make up the elements of & and
C. The basic form allows for the description of several
heat transfer mechanisms given the appropriate temperatures.

For conduction, the equation becomes

aT (17)

or, in the spatially discretized form used for this model

kl/"lll - cpe (18)
Q,= - (r=71,).

N . . kA
In this case (,, is defined as the conductance, -+ Where

k., = thermal conductivity applicable to the volume

between nodes i and j

A,, = cross-sectional area through which heat is trans-

ferred between nodes i and j

L,, = distance between nodes i and j.

Although this model does not contain convective or radiative
heat transfer, these mechanisms can be supported by the
model by setting




GC=NnA (19)
for convective heat transfer, and
A (20)

G=nh

r

for radiative heat transfer, where

h = convective heat transfer coefficient

and

h, = the effective linearized radiative heat transfer

coefficient.

The thermal capacitance C is derived from the transient

equation
O=pe vl (21)
Poat
so that
Co=pic, V', (22)
where
p, = density of the region of soil at 7T,

¢,, = specific heat of the region of soil at T,

"t

l’, = volume of the region of soil at 7,.

10




Both thermal conductance, (,;,, and thermal capacitance, C,,

are composed of geometric factors (L, A;, and ;) as well
as soil properties (k;, p;,» and c,). These will be dis-

cussed separately.

3.3 GEOMETRY

Bahnfleth's study of undisturbed ground temperature patterns
[3] shows two distinctly different zones of temperature
fluctuation: a relatively fast zone near the ground surface
where the temperature changes are in scale with the tempera-
ture changes of the forcing temperature, and a slower zone
where temperature fluctuations are strongly damped. Because
the response rate of the near-surface zone is more similar
to the response rate of typical building components than to
that of the remainder of the earth, it was decided to model
the near-surface earth and the remainder of the earth as
attached but distinct components. The point of separation
of these zones is the diurnal penetration depth, or roughly
0.5 meters below the surface. The temperature at this point
remains nearly constant over a day at the daily average

ground surface temperature.

Horizontal maps of ground temperature beneath buildings show
a circular pattern, consequently, a cylindrical coordinate
system was used to produce an axisymmetric two-dimensional
model. Horizontal temperature nodes are set at the slab
center, the edge-equivalent radius, and the location where
the ground temperature is unaffected by the building (far-
field). The edge-equivalent radius is calculated as the
radius of a circle of equivalent slab perimeter, or

11




P (23)
r,==—.
P2

In this fashion, a 10m by 10m slab is mapped to a circle of

radius

40 (24)

r,= =6.37m
21

Vertical temperature nodes are set at the diurnal penetra-
tion depth of the surface temperature wave (approximately
v.5m below the surface), the annual penetration depth
(approximately 15m below the surface) and the depth of the
point of inflection or knee of the undisturbed temperature
profile (approximately 4m below the surface). Studies ([3],
(4], [5]) of underground temperature patterns show a shape
which could be approximated by linear temperature profiles

between these temperature nodes (Figure 2).

The area-equivalent radius is used for calculations in the
vertical plane. It is calculated as the radius of the

circle which has the same area as the slab, 1i.e.

i F (25)
l‘”—,\ ;

Therefore, for calculations in the vertical direction, the

10m by 10m slab is mapped to a circle of radius

r.,= /IOO'~“ Gim (26)
a = \/; —7[—-~\). >

12




so that area is preserved.

Figure 2: Undisturbed Ground Temperature Profile
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Although this model cannot be reproduced graphically, it
accounts for both the perimeter and area effects of ground-

coupled heat transfer.
These geometric relationships were used to build the geomet-

ric matrices which were used, in turn, to develop the coef-

ficient matrices.

13




Three matrices

4, L, and V.

constitute the geometric factors of the

Matrix -l is the symmetric 7 x 7 matrix

A g Ay Ay
oo Aoy Agy Ay
Agy Ay Ay, Ay
Aoe  Azp ey oy
Ay Ay Ay Ay
Aoy YIS PR ¥
oo ue Ao Ay

Ag

Aza

(27)

where the subscripts refer to the path, that is, A, is the

area through which heat is transferred from 7, to 7,

Matrix /. is a similar symmetric

e~
i
>

For the 7 node network model,

Lo g Ly Ly
Lyn Loy Loy Loy
Loy Lay Lyw 1oy
Lew Lae Lo Loy
Lo, Ly Ly, 1y
low Taa Low Ly
loo oo Too 1y

7 x 7 matrix:

(28)

not all of the nodes are

connected, therefore the elements which relate unconnected

nodes to each other become 0 leaving

14




o A, O A, 0O A, O (29)
A, 0 Ay 0 0 A,y A,
0 A,y O O Ay Ay O

A=| A, O 0 0 0 O A,

0 0] Az 0 0 0 A
0 A, 0 oo Ao 0 0
and
o 1, O L, O L, O (30)

1" is the vector

v (31)

l/ = l/' 2

The definition of the elements, or network parameters,

A, L, and 1", is, in part, independent of the model
structure, but is based on the geometry presented above and
is described further in Section 4.

15




3.4 SOIL PROPERTIES

Soil properties are represented by another 7 x 7 symmetric

matrix:
0 Ko 0 Ky
Ko 0 K.4 0
0 Ko,y 0 0
K=l &, O 0 O
0 0] K O
Kya Koy kg 0
QO Ao @] Ao
and two vectors,
p=(p. P
and
c,=(Cp, O,

2l

O k,, O (32)
0 koo Kg
kyy Ky O
0 0 o
0 0 kg,
0O 0 0]
k., O 0
04) (33)
o). (34)

Thermal properties of the soil can be defined separately for

each energy balance equation. Individually, these equations

assume constant thermal properties.

Consequently, the

properties are defined as the "effective" value of the

thermal properties in the region specified by the equation.

The need for an "“effective"
thoroughly in Bahnfleth [3].

defined as

g

|

™~
~> [ ..\

conductivity is described more

Effective conductivity is

(35)

16




where

l, = the thickness of layer k, and
kK, = the conductivity of layer k.

Calculated from this equation, k,, is the effective value of

the soil conductivity in the region through which heat

transfers between 7, and T,.

3.5 INPUTS

The inputs to the transfer function equation are (referring
to Figure 1) the temperatures of the slab core area (7,) and
the slab edge area (7., and the undisturbed ground tempera-
tures near the surface (7 ;) and in the deep ground (7).
Because the "top" nodes are defined at the diurnal
penetration depth, their temperatures can be approximated by
the daily average of the surface temperature, i.e. 7, = the
daily average slab center temperature and 7, = the daily
average ground surface temperature. The undisturbed ground
surface and deep ground temperatures can be determined a

prior3 using a variety of algorithms.

17




4 NETWORK PARAMETER SPECIFICATION
4.1 METHOD

The network parameters are the elements which compose the
geometric matrices /A, [, and 1'. Their definition depends
on the method of discretizing the geometry of the system. In
other words, the magnitude of the element is dependent on
the sizes of the regions assumed to be at the specified
temperatures. Because few of the regions are actually iso-
thermal, the allocation of area and volume to a specific

temperature must be based on some method or algorithm.

In order to evaluate the validity of the postulated network
parameters a test system which fixes input conditions and
environmental parameters was established. A base case using
the same fixed conditions was used to compare both the total
flux data and the form of the daily average flux curve.

This provided not only data on the accuracy of the model but
also clues to the nature of any inaccuracies that might

cccur.

4.2 BASE CASE

The baseline for evaluation of the model is a detailed
finite difference model (FDM) of heat *ransfer from slab
floors developed by Bahnfleth [3]. A three-dimensional
model of a slab-on-grade and the soil beneath it is solved
by numerical technigues in the program SLAB3D. The space
above the slab is defined by a constant room air tempera-
ture. Undisturbed soil temperature distributions as calcu-
lated from subroutine TEARTH are used as the far-field
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boundary temperatures. The deep ground boundary can be
either a specified flux or a specified temperature plane.
Bahnfleth generated data for a variety of surface shapes and
sizes as well as a number of diverse climatic conditions.

4.3 DESCRIPTION OF TEST SYSTEM

4.3.1 GEOMETRY

Because the model was developed based on a square slab-on-
grade, the development of the network parameters was based
on this geometry. Base case data were available for two
sizes of square slabs, a 12m X 12m square and a 45m X 45m
square. The flux per unit area calculated by the finite
difference model for these two slabs for a calendar year in
Minneapolis MN is shown in Figure 3. Due to the dominance
of the edge effect in the smaller slab, the annual flux
variation is much greater for the smaller slab. If the
effect of the balance between the perimeter loss and edge
loss is to be accommodated, it is important that the test
system strongly exhibits this effect. Consequently, the
smaller 12m x 12m slab was used as the primary cest system.

Figure 3: FDM of Two Square Slabs
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4.3.2 BOIL PROPERTIES

Although the system model can support variable soil proper-
ties, this capability is not tested in this study. Avail-
able base case heat flux data were calculated using constant
soil properties. The same properties are used in this

study. They are:

p=1200 kg/m’

c,=1200 J/kg/K

k=1.00 Ww/m/KN

4.3.3 INPUTS

For this study, existing data from Bahnfleth's one-
dimensional semi-infinite solid model of the heat transfer
in undisturbed earth [3] were used to provide input data for
the nodes at the far-field and the deep ground. The hourly
ground surface temperatures calculated by this model vary
with local climatic conditions while the deep ground temper-
ature is constant at the annual average ground surface tem-
perature. Because the far-field node is placed at the
diurnal penetration depth, the daily average ground surface
temperature rather than the hourly ground surface tempera-
ture is used as irput to the multiple input transfer func-

tion model.
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Exact data for the daily average slab center and slab edge
temperatures were not available from the base case data set.
This is the usual case with most energy analysis programs.
Therefore, although it is possible in the network mode to
include a temperature difference between the slab center and
the slab edge, daily average slab surface temperatures
(which are equal to the ground temperature at the diurnal
penetration depth) were used for both these temperatures.
The network parameters developed using the assumption of an
isothermal slab should be appropriate for use with energy
analysis programs, such as BLAST and DOE-2 which use the

same assumption.

Data were available from the base case data set for four
locations, Minneapolis MN, Medford OR, Philadelphia PA, and
Phoenix AZ. These data were generated originally from Typi-
cal Meteorological Year (TMY) weather data for these sites.
Figures 4, 5, 6, 7 show the daily average air temperatures

at these four locations.

In order to develop the most responsive model network param-
eters, the most rigorous weather conditions were used. The
figures indicate that the weather data for Minneapolis MN
would provide the most demanding conditions for the model.
In addition to a large annual temperature variation, the
temperature variation from day to day is also larger in the
Minneapolis data than in that of the other three locations.
During the development of the network parameters, therefore,
the data derived using Minneapolis weather were utilized to
evaluate the accuracy of the model fit. The model was then
tested later at the remaining three locations.
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Figure 4: Daily Average Air Temperature -- Minneapolis MN
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Figure 5: Daily Average Air Temperature -- Medford OR
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Figure 6: Daily Average Air Temperature -- Philadelphia PA
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Figure 7: Daily Average Air Temperature -- Phoenix AZ
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4.4 GEOMETRIC DEFINITION OF NETWORK PARAMETERS

The geometric definition of the network parameters is based
on a series of assumptions about the size and shape of the
temperature regions beneath the slab as well as the geometry
of the slab itself. The geometry of the slab and the ground
in the vicinity of the slab is the foundation for these
assumptions. For the test system, the slab geometry is

defined by

A =12x12=144m? (36)

5

Po=4x12=:18m

=6.77m

The ground geometry has already been fixed by the network

model [see Figure 1].

The elements /., of the matrix L can then be assigned as the

distance between nodes i and j, that is,

O [, O L, O L, O (37)
Lz Y [ 23 0 0 Laa Lo
O L,y O 0 Ly Lzg O
[1={ t,, O O O O 0 [,
0O 0 Ly 0 0 0 L,
Lve 1oy Lyg O O O
o L,, O I L, O O
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Referring to Figure 1, note that

and

Substituting D,.

Lig=Llaa=1l34=D> (39)
Lye=Lyp=1,. (41)

D,., D;, and r, into L,

r, 0 D, O D, O (42)

c by O 0O D, D

D, O O D, D, O

0o o o o0 0 r,

O D, 0 O O D,

b, b, 0 0O ¢ O

D, 0 r D 0O O

P 3

The elements of A are defined as the area through which

heat is transferred between /',

A=

0 (43)
Aze
0
Ape
Ate
0
0

and [,
Az 0 Ave 0 Ag
0 0 0 0 0
0O A;,, O 0 O
Ayry Asy 0 0 0
Ay, 0 Ape  Ate 0
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The determination of the elements of /1 is more complex than
the determination of the elements of L. Although the model
is not strictly geometric, the heat transfer areas can be
initially postulated based on geometric considerations.
First, it is assumed that ,,=A4,4, Az.= Az, and Az, = .1;3,4.
Then the area through which heat is transferred between

T, and 7T, can be estimated by the area of the slab which
can be approximated by the daily average slab surface center
temperature, 7,. Studies [3],[4], and [5] have shown that
temperature gradients across horizontal ground-contact sur-
faces are small over most of the surface and relatively
large near the edge. For this model the area in the plane
of the ground surface considered to be at 7, is the area of

the slab minus the area near the slab edge, or
A=Ay =1u(ro-d,)?* (44)

where d, is the distance from the slab edge to the location
where the slab surface temperature is approximately 7,.

The area through which heat is transferred between

T, and T, can be defined as the area where the edge effect
predominates. This area is specified as the area within a

definable distance, d, of the building edge minus the area

already associated with 7,, or
Age= Apg = 1(r  + )" =y, (45)

where «/, is the distance the edge effect region extends

beyond the slab edge.
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The remaining area is associated with the far-field tempera-
ture, T,. It is calculated from the equation,

A3/=A3d=n(ra+l):i)2‘Alb—Azq (46)

where D; is the distance from the edge of the slab to the

undisturbed ground in the far-field, or 12.5m [3].
The area through which heat is transferred between

7', and T, is calculated from the Fourier equation for con-

duction through a hollow cylinder

21nh (47)
Q=k| 1, |AT.

In—
-

i

By the convention of the matrix definition, all equations

are cast in the general form

kK,AGY .. (48)
Q4/= l (Ii‘l/)'
iy

Therefore,

(49)

so that
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2uh _ 2ul,, Ay (50)

r Lpe* L,
in= In °% Ly
and,
_2nlgz Ly 2n(D,)(Dj) (51)
9]— ‘L‘ = ,_)’D .
In 2ot In &2
be p
Similarly,
2][[.2(1L23_23[(D2)(D3) (52)
23 Lpe*Los B rptD; '
in - In
- 12 ru

It is postulated that the slab is isothermal to within d, of

the slab edge. It is therefore estimated that the area
through which heat is transferred between 7, and 7, can

also be calculated correspondingly:

_2nly(dy) _2u(D)(dy) (53)

Tpo
'I)

In
Lpg—d, rp=d)

In

Again, A,, is calculated in a similar fashion:

21l (dy) 21D, (dy) (54)
A= - = - .

fn — In
Lyp~d, rp-dy

»
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The volumes associated with temperatures T7,, 7T,,and T3 are
calculated by
IV, = A0, (55)
V,=A1,,n,

and

ly= /13/I13

Dy,. D,, and D, are defined by temperature profiles of the

undisturbed ground and do not change with slab size or
shape. Referencing Section 3.3 and Figure 2, D, is the
distance between the inflection point and the diurnal

penetration depth or,
D, = 4.0m - 05m = 3.5m. (56)

D, is the distance between the undisturbed deep ground and

the inflection point or,
D, = 15m - 4m = 11lm (57)

and D; is the distance from the edge of the slab to

undisturbed ground temperature in the vertical plane,
D, = 12.6m. (58)

ty, h,, and h; are assumed to be equal to each other and

equal to half of the depth of the entire system:

hy=h,=h,=145/2=7.25m. (59)
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The results of Bahnfleth [3] show that for rectangular
slabs, surface temperature is nearly constant to within 1.0m
of the edge regardless of slab size or aspect ratio. Based
on these data d, is assigned the value of 1.0m.

In the edge effect region, the direction of heat flux
changes dramatically over the year. Temperature profiles
developed by Bahnfleth [3], and Kusuda [5] show that in the
region between the slab edge and roughly 3m outside the
building edge, the direction of heat flux varies dramati-
cally over the annual cycle. It is desirable that this
region be distinguished from the regions where the heat flux
patterns are more consistent over the annual cycle. There-
fore, this region is characterized as the edge region and
its area (in the plane of the ground surface), 1,., is
encircled by a boundary approximately 3.0m beyond the edge
of the slab. Therefore, «, is assigned the value of 3.0m.

For the test system, / becomes

0 7.61 0 3.0 0 11 0 (60)
7.61 0 12.5 0 0 11 3.5
0 2.5 0 0 3.5 11 0
l = 3.5 0 0 0 0 0 7.64
0 0 3.5 0 0 0 12.5
11l 11 I 0 0 0 0
0 3.5 0 7.6+ 125 0 0
Substituting /,,, r,. r,. «, and d, into the area equations

and introducing the values into the matrix -1 gives
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0
492.6

A=}1 104.6

104.6

The volume vector

492.6 0 104.6 0 104.6
0 891.2 0 0 195.3
891.2 0 0 866.7 866.7
0 0 0 0 0
0 866.7 0 0 0
195.3 866.7 0 0 0
195.3 0 156.7 283.6 0

758

Vv 141

6284

6

then becones

J
m

0
195.3
0
156.7
283.6
0
0

(61)

(62)

4.4.1 MULTIPLE~-INPUT TRANSFER FUNCTION COEFFICIENTS

Program GTF [see Appendix C] calculates the multiple-input

ground
stants
erties

scalar

geometric network parameters are:

4.35i9192373e+ 006
3.9055744470e - 003
9.7034921516e+002
1.7727765309¢ - 006

1.2971329802e+» 007
4.2780480377e- 002
954201 41708e+002
5.2814397560e « 006

{ 288/7351382¢-007
$.2602873134e- 002
-9.4828788170e + 002
5 2447951733 006

1.2679401162¢+ 006
3.8566553037e - 003
9 5226778682002
1.7361314679¢+006

3.9049689583e - 003
-2.33304i4785e+ 007
8.0401375444»+003
1.9601062778e - 004

+.278218630%e - 002
6.9556564823e ¢ 007
-7.9063398B1172+003
5.839530/500e - 006

4.2601077706e - 002

6.9123847927e+ 007
- B8.0230577242¢+ 003
5.79901 106320+ 006

3.8572502888¢ 003
2.78976960060 - 00/
7 89031811/71e-003
- 1.9195889092¢ - 006

9.7034921495e+ 002

8.0401375450e+ 009

9.1597479308e+ 006
1.8115962471e-003

9.5:420141644e + 002
7.9063398134¢ - 003
2.7295669802e + 007
- 1.7814390682¢+ 003

-9.6828788233¢ + 002
-8.0230477225e- 003
-2.7113081293e+ 007
- 1.8077478367e+ 003

9.0226778703e - 002
7 8903181166e - 003
8.97715800/7e+ 006
1.7778390736e+ 003
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transfer function (GTF) coefficients and scalar con-
from the model structure and geometry and soil prop-
using the method of Seem. The GTF coefficients and

constants calculated for the test system with the

1.7727765309¢+ 006
1.9601062778e+ 006
1.8115962474e+003
-8.5480206671e¢+ 006

(63)

-5.2814397560e+ 006
-5.8395307500e + 006
- 1.7814.490693e+~003
2.5477632842¢+ 007

5.7990140632e - 006

-2.5312101370e+007

-1.736131467%e - 006
- 1.91958890920+ 006
1.7778390733e+003
B8.3824877947 ¢+ 006

5.2447951733e+ 006
-1.807747R356¢+ 003




=-2.9792| (64)

)
[

2.9580:1

i
N
1}

-0.97¢329.

i
w
i

4.4.2 INITIAL HEAT FLUX CALCULATIONS USING MULTIPLE INPUT
TRANSFER FUNCTIONS

Program QCALC (see Appendix C) uses the GTFs and the input
temperatures with Equation (5) to calculate the daily aver-
age heat flux. The results are divided by the slab area in
order to be compatible in units with the base case data.
Figure 8 shows the flux plot of the GTF model vs the finite
difference model. Figure 9 plots the daily average flux of
the GTF model and its difference from the FDM. Although
annual period of the flux curve appears nearly correct, its
amplitude is much too small. Because the magnitude of the
maximum flux is fairly accurate, it is likely that the pri-
mary cause of the error is the assumption of too much mass
in the system. The network parameters were based on the
assumption that the mass associated with the system is ccn-
posed of three cylinders of equal depth with cross-sectional
areas equal to the area through which heat is transferred
vertically in their respective regions. The resulting vol-
ume vector (Equation (62)) heavily weights the system mass
with the far-~field undisturbed ground temperature. The
result is that the mass of soil directly beneath the slab
has the least effect. This is obviously incorrect. Various
changes to the model were introduced to improve its behav-

ior. These are discussed in Section 4.5.
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4.5 PARAMETER REFIMN."MENT USING EMPIRICAL METHODS

4.5.1 MODEL BABED ON 12m X 1l2m SLAB

The effect of soil volume on the shape of the annual flux

curve, although evident, is not easily described by geomet-
ric techniques. It mAy be possible to improve the accuracy
of the model, particularly in cases where the daily average
flux per unit area is small, by adjusting the model parame-

ters based on improved fit to the base case data.

The original parameter set based on system geometry showed
an excess of thermal mass in the system. Therefore, the
volume vector was revised by reducing the depth of the cyl-
inders of mass associated with !, and |’y to 1m from 7.25m
while leaving the mass associated with ||, intact. The

volume vector then became

7958 (65)
I"=1 190% m
867

The remaining parameters were held the same as the original

run. Table 1 Run 1B presents the parameter set.

Program GTF was rerun with this new set of parameters and
the results are shown in Figures 10 and 11.
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Table 1: Parameter Sets for Runs 1A - 1C
RUN 1A RUN 1B RUN 1C

AREA [m?) 144 144 144

PERIMETER (m] 48 48 48

A/P [m] 3.0 3.0 3.0

A, 157 157 157

Al 493 493 493

Ape 284 284 284

Ay 891 891 891

Ao = A4 105 105 105

Aza= Az 195 195 195

Agp=Azaq 867 867 867

v, 758 758 758

vV, 1416 195 195

v, 6284 867 87
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Figure 10: Flux -- FDM and Run 1B
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Figure 11: Flux and Difference -- Run 1B
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Figure 10 plots the daily average heat flux over the cycle
for the base case FDM and the GTF Run 1B. Comparison with
Figure 8 shows the substantial improvement in fit. Figure
11 shows the flux and the difference from the FDM results of
Run 1B. Comparing Figure 9 with Figure 11 it can be seen
that model 1B vastly reduces the model error in the summer-
time data.

The new set of parameters leads to a better match of the
base case data from which it can be inferred that the pri-
mary flaw in the original parameter set was indeed an excess
of mass. Even though the revised set of parameters is
substantially better than the original set, the figures
indicate that more improvement is required. The annual
amplitude of the curve is still slightly too small and the
new set of parameters presents a new flaw in the model: the
flux calculated for the end of the year becomes increasingly
too small. This seems to indicate an imbalance in the mass
distribution. The first step towards resolving this situa-
tion was to reduce the mass associated with the far-field
region in an effort to both reduce the total mass of the
system and place more emphasis on the mass immediately
beneath the slab. The depth of the cylinder of mass asso-
ciated with the far-field (h;) was reduced from 1m to 0.1 m.
resulting in the new volume vector

758 (66)
v=| 195 | m?3.
87

Oonce again, the remaining network parameters were held the
same as the original run (see Table 1 Run 1C).
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The new GTFs and scalar constants were used to recalculate
the daily average heat flux. The resulting flux and differ-
e.:ce plots are given in Figures 12 and 13. On a plot of the
daily average flux (Figure 12) Run 1C and the FDM are
practically indistinguishable. Figure 13 presents the flux
calculated in Run 1C and the difference between Run 1C and
the FDM. Except for a few points early in the annual cycle
when the flux is high, the difference between Run 1C and the
FDM is less than 1 W/m"2.

The match between the FDM and Run 1C is significantly better
than both Run la and Run 1b. Table 2 gives a numerical
comparison of the three GTF models with the base case finite
difference model. It can be seen that 90% of the data were
within 15% of the FDM and the percent error in total energy
consumption over the annual cycle is -1.0%. ‘

Figure 12: Flux -- FDM and Run 1C
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DAILY AVERAGE HEAT FLUX [W/m*2)

Figure 13:

Flux and Difference Run 1C

400

Table 2: Results of Runs 1A - 1C
MODEL MEAN SUM OF % OF TOTAL |% ERROR| TOTAL
FLUX SQUARED DATA ANNUAL IN ANNUAL
(W/m~2] DIFF WITHIN | ENERGY TOTAL |DIFF IN
15% OF | CONSUMP| ENERGY | ENERGY
FDM [%] CONSUMP | CONSUMP
[%]

FDM 6.10 |==—mr——| ——————— 7716.9 | ==——vm= | cmme =
RUN 1A 8.10 2149.2 37 10194.4 24.3 +2477.5
RUN 1B 6.35 214.2 64 7984.4 3.4 +267.5
RUN 1C 6.07 69.9 90 7641.4 -1.0 -75.5
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4.5.2 MODEL CORRECTIONS BASED ON 45m X 45m SLAB

Using the same parameter equations as Run 1C, changing only

and r,, the GTFs and scalar constants were recalculated

I p

for the larger (45m x 45m) slab.
set is shown in the column labeled Run 2A in Table 3.

The resulting parameter

Table 3: Parameter Sets for Runs 2A - 2D
RUN 2A | RUN 2B | RUN 2C | RUN 2D

AREA [m?] 2025 2025 2025 2025

PERIMETER [m] 180 180 180 180
A/P [m] 11.25 11.25 11.25 11.25
A, 619 619 1113 1113

Ay, 1945 1945 1945 1945

A, 759 759 1113 1113

A 2386 2386 3499 3499
Ap="N14 1869 1869 1869 1869

Apy= Ao, 663 2349 663 879
Agp=Asq 1978 293 1978 1762
vV, 13548 13548 13548 13548

V., 663 2349 663 879

g 198 29 198 176

Figure 14 compares the output for the

GTF model and the FDM base case.
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Figure 14: Flux and Difference -- Run 2A
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There is a distinct droop of the GTF during the winter sea-
son, the time when the edge effect is strongest. During the
summer season when the edge effect is small, the GTF model
is quite accurate. This suggests that for larger slabs the
method for calculating the parameter set does not account
adequately for the edge effect. Returning to the original
energy balance on the edge node

Koo Ape koeAoe koA (67)
RN (T - T )+ (T - T+ L (T, -T =0,

Lbe 2e fe

and recalling that for this study 7.=7,, we see that there

are three likely causes for underprediction of ecge loss.
The first possibility is that A,, is too small so that loss
to the ground beneath the edge is underpredicted. An
adjustment to 4,, should produce a generally linear change
in the flux, although the seasonal change of 7, will modify
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that effect to some extent. The second possibility is that
the area A, is too small so that heat flux directly to the
ground surface is .nsufficient. Thirdiy, the temperature
node 7, may be too high. This is most likely to result from
a deficient A,; which would lead to a reduction in the heat
transferred from the node beneath the slab edge (node 2) to
the node at 4 meters depth in the far-field (node 3) thereby
maintaining an inappropriately elevated T,.

Two studies were performed in order to determine the most
likely cause of the underprediction of edge loss in the
larger slab. The first investigates the effects of increas-
ing A,,. The second explores the possibility of improving

the model {it by increasing A,; and A,.

Inspection of the parameter sets shows that in parameter set
1 (used for the smaller slab) the area through which heat is
transferred directly from the slab core to the earth (A4,,)

is nearly half the area through which heat is transferred
directly from the slab edge to the earth (A4,). In parame-
ter set 2, however, the trend is reversed so that A,, is
nearly three times 4,,. While it is anticipated that the
effect of the core area would increase as the slab becomes
larger, this dramatic change seems excessive, a notion which
is reinforced by the apparent underprediction of the edge
effect from parameter set 1. A possible source of error is
the determination of the distance the edge effect extends
beyond the slab edge (d.;). It is interesting to note that
this distance is equal to the characteristic length (%) of
the smaller slab. It is postulated, thereiore, that d,
should be defined by the slab characteristic length rather
than by a constant. A new set of parameters (see Run 2B in
Table 3) 1is established based on this theory. The daily
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average flux calculated by this new set of parameters and
the difference from the FDM are shown in Figure 15. The
curve shows a better fit of the data particularly during the
winter season when the flux is highest. Examination of the
difference between the FDM and GTF Run 2B, however, shows
that the model still demonstrates a systematic seasonal
error. Comparing Figure 14 and Figure 15, it can be seen
that increasing A,, has produced a linear increase in the
Nonetheless, the

model is reasonably accurate over the annual cycle giving an

heat flux throughout the annual cycle.

error of 3.6% in total annual energy loss. Table 4 gives a
numerical comparison of GTF models 2A and 2B with the base

case FDM.

Table 4: Results of Runs 2A and 2B
MODEL MEAN SUM OF % OF TOTAL | % ERROR{ TOTAL
FLUX SQUARED DATA ANNUAL IN ANNUAL
[W/m~2] DIFF WITHIN | ENERGY TOTAL | DIFF IN
15% OF | CONSUMP| ENERGY | ENERGY
FDM [%)] CONSUMP | CONSUMP

(%)
FDM 2.50 | m=—mee| me————- 44167 .7 | ——=—===| =~
RUN 2A 2.03 106.9 33 35911.3) -18.7 |~-8256.4
RUN 2B 2.59 54.0 64 45762.0 +3.6 +1594.3
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Figure 15: Flux and Difference -- Run 2B
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4,3 and A,, are geometrically similar (see egns 51 and 52).

The correction is made originally on A,; because the T3~
Aj3-T3 system is more stable than the Te-Afe-Tf system. The
correction is then applied to both A3 and Afe. The
determination of the corrected A,; is based on the assump-
tion of a functional relationship between A,; and the slab
characteristic length. Characteristic length is discussed
in more detail in Section 6. A,; is calculated from the

equation
A23 = 2][‘remuu1‘2d (68)

Assuming that A,;=891m? is correct for the small slab

AZI] =891 = 2ur0quiuL2d = 2”“'.(.'quiu(l I) (69)
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so that

_ 891 _ (70)
Feawn ™ 5301 1)

If 7'spuw 1S assumed to be a simple function of characteristic

length, a functional relationship can be postulated. Sup-
pose
= K*(characteristic length) (71)

r

equiv

The characteristic length (A/P) of the small slab is 3.0m.
So, from Equations (70) and (71),
=13=K*3.0 (72)

r

equiv

so that K is approximately equal to 4.5. Then, using
Equation (71), Equation (68) becomes

Ay =21l,,(4.5)(characleristic length). (73)
Similarly,
Ay =201, ,(1.5)(characteristic length). (74)

The parameter set for Run 2C is given in Table 3. GTFs and
daily average heat fluxes are recalculated with the new A,;
and Agr. The numerical comparison of Run 2C to the FDM and
Runs 2A and 2B is tabulated in Table 5. Run 2C shows a
significantly improved fit to the FDM data as evidenced by
the substantial decrease in the sum of squared difference
and the percentage of the GTF data within 15% of the FDM
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data. Unfortunately, this improvement in fit was accompa-
nied by an increase in the total error over the annual
cycle. Examination of the plot of the difference between
the results of RUN 2C and the base case FDM (Figure 16)
shows that the wintertime droop has been corrected, but
there is still a linear underprediction of slab loss.

Figure 16: Flux and Difference -- Run 2C
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It was demonstrated by Run 2B that such an error might be
corrected by an adjustment of A,, however, an adjustment of
the magnitude of 2B is unnecessary. Once again, a possible
source of error is the determination of the distance that
the edge effect extends beyond the slab edge (d,). If d, is
assumed to be a function of slab characteristic length of

the form

d,=c+m(characteristic length) (75)
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then ¢ and m can be chosen so that d, varies with slab

geometry. Based on the results of the small slab, c is
probably less than 3.0 and m less than 1.0. If c is assumed
to be 2.5m then m can be calculated from the model of the
12m x 12m slab.

3.0=2.5+m(3.0) (76)
which gives
. 3.0-25 (77)
3.0

which is approximately equal to 0.15. When the equation
d,=?2.5+0.15(characteris’.c length) (78)

is applied the new values of d, become:

for the smaller slab
,=72.95 (79)

and for the larger slab

d,=4.19 (80)

The parameter set is recalculated and given in Table 3, Run
1D. When this change is made in the calculations for the
larger slab the result is a significantly improved fit to
the FDM base case. The flux and difference curves are shown
in Figure 17. As expected, the difference curve has shifted
linearly, moving nearer to the zero difference line. The
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numerical comparisons are given in Table 5. The quality of
the fit (as measured by the sum of squared difference and
percentage of data within 15% of the FDM) is improved as is
the total energy consumption.

Figure 17: Flux and Difference -- Run 2D
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Table 5: Results of Runs 2A - 2D
MODEL MEAN SUM OF % OF TOTAL | % ERROR| TOTAL
FLUX SQUARED DATA ANNUAL IN ANNUAL
[W/m‘2] DIFF WITHIN | ENERGY TOTAL |DIFF IN
15% OF | CONSUMP| ENERGY | ENERGY
FDM [%] CONSUMP | CONSUMP
[%]

FDM 2.50 | m==w== | mm——een 44167 .7 | =======| mmmemue
RUN 2A 2.03 106.9 33 35911.3 -18.7 -8256.4
RUN 2B 2.59 54.0 64 45762.0 +3.6 +1594.3
RUN 2C 2.31 19.9 83 40780.2 -7.7 -3387.5
RUN 2D 2.42 8.1 97 42872.2 -2.9 -1295.5

4.5.3 CORRECTED MODEL APPLIED TO 12m X 12m SLAB

Because the modifications have changed the functional rela-

tionships which effect the original parameter set, it is

necessary to recalculate the parameter set for the smaller

slab and recalculate the daily average fluxes as Run 1D. A

comparison of the parameter sets of Runs 1A-1D is given in

Table 6 and the results in Table 7.

The quality of the fit

as determined by the sum of squared difference is slightly

degraded by the changes made for Run 1D.

Nonetheless, the

improvement of the fit of the model to the data for the

larger slab more than justifies the change.
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Table 6: Parameter Sets for Runs 1A - 1D
RUN 1A | RUN 1B | RUN 1C | RUN 1D

ARFE A [mzj 144 144 144 144
PERIMETER [m] 48 48 48 48
A/P [m] 3.0 3.0 3.0 3.0
Ae 157 157 297 297
Ay, 493 493 493 493
Ape "84 284 284 297
Ay 891 891 891 933
1= A 105 105 105 105
A,,=A,, 195 195 195 192
Ay, = Asq 867 867 867 870
L 758 758 758 758
5 1416 195 195 192
I 5 6284 867 87 87
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Table 7 Results of Runs 1A - 1D
MODEL MEAN SUM OF % OF TOTAL | % ERROR| TOTAL
FLUX SQUARED DATA ANNUAL IN ANNUAL
[W/m~™ 2] DIFF WITHIN | ENERGY TOTAL |DIFF IN
15% OF | CONSUMP| ENERGY | ENERGY
FDM [%] CONSUMP | CONSUMP
(%)

FDM 6.13 |=~==—-=|—-—m——= 7716.9 | —====== | m=——=—-
RUN 1A 8.10 2149.2 37 10194.4 24.3 +2477.5
RUN 1B 6.35 214.2 64 7984.4 3.4 +267.5
RUN 1C 6.07 69.9 90 7641.4 -1.0 -75.5
RUN 1D 6.19 82.0 89 7786.6 +0.9 +69.1
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5 FINAL DEFINITION AND TESTING

5.1 FINAL DEFINITION

The model used for Runs 1D and 2D gives excellent results
for both the 12m x 12m square slab and the 45m x 45m square
slab. The parameter sets generated for both these runs were
constructed from the same series of equations developed
using both geometric and empirical methods. The equations

are repeated here in their final forms.

D, = 4.0m - 0.5m = 3.5m. (81)
D, = 15m - a4m = llm (82)
Dy = 12.5m (83)
o, = 1.0m (84)
d,=2.5+0.15(characteristic length) (85)
=05 s (=)
h,=1.0m (87)
liy=0.1m (88)
Lyw=1loe=14,=D), (89)
Iva=1ls0=1l434=D, (20)
[o=la=0y (91)
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P [
o ‘\l ﬂ..
_ZJL(D,)(d,)
ba r
»
lnr”_¢ij

Ay =2nl,,(4.5)(characteristic length)

_ 2][([)2)((i1)
M ™ T/

In —=2

rp_dl

A,y=21l,,(4.5)(characteristic l2ngth)
Ap=Aq=1(r,-d,;)?

Age=Apq=1(r +d,)?-A,,

Agp=Azq= W(ra+D3)2=Ay,~ Ay,
V,=A,h,

V,=A,h,

V= Ay h,
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(92)

(93)

(94)

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)
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These equations are used to construct the matrices

O A, O A, O A, O (104)
Az 0 Az 0 0 Aza Az
O Ap O O Ay Ay O
A=l A, O 0 0 0 0 A,
O 0 Ay, O 0 O A
Ayy Apg Asq O O 0 O
0 Ay, O A, A, O O
o L, O L, O L, O (105)
L2 0 Ly 0 0 Lyy Ly
O Ly O 0 Ly Ly O
1=l L, O O 0 0 0 I,
O 0 Ly, O 0 0 L,
I,y Lyy Lsa O O O O
O /,, O Ly L, O O
v, (106)
v=|V,
Vs

The geometry matrices A, L and V, along with the soil
property matrices k, p, and ¢, are used to calculate the

matrices

o ¢, O G, 0 G,, O (107)
P 0 G2 Y Y Caa Gae
0 G,y O Gz Gizg O
¢c=| ¢,, O 0 0 0 0 Gy,
0 0 G, O 0 0 G,
Cia Gay Gzq O 0 0 0
0 G,, 0 G, G, 0O 0
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C, (108)

c=| C,
Csy
by the equations
G”_-’_I"—'
and
Ci=PiCin1. (110)

These, in turn, are used to generate the coefficient

matrices
(111)
_Glb_GIZ-GId Eﬁ 0
C| CI
- E_'E ~G2e= G127 G23=Goq %
C2 C2 C2
0 G_z_g 'G:;/_st"csd
C3 C3
c Gy (112)
- 0 <0
C, C,
G G
3= O O \2(1 ‘2e
C, C,
G- G
o =2 22X o
3 Cg
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0O 0 Gy
C:
Gld GZd G3d
o] G,,
_Clb_(;ba
o —
D:
0
Gbe

0
0 0
CJI—GQ, 0
0 —Gld—GZd—GJd
Ge, 0

(113)

(114)

which are used with Seem's method to calculate the final

multiple input GTFs and scalar constants which for the

12m x 12m slab are:

2.8111895231a+002

2.0458127 1890 + 000
Sa=
1. 77780831 44e+ 006

L. 16985 13689e + 007

2.1006076393e ¢ 001
6.3178341430e ¢ 002
14.762851346%e + 006

5, (
- 1.0412722758¢+ 007
- ( 1.9581095233e+ 001
9.6762874787 0+ 002
4.2374081459¢ - 006
f;,-(

306580495640+ 006

1.64603674540+ 000

6.7715988886a+ 002

- 1.247 1 194060+ 006

-2.184107/74 140+ 007
5.3595180348a + 005
2.0549408110a+ 006

2.1005076402e+ 001
6.1191664962¢ « 007
-5.412681971le+ 005
- $.50549288%56e + 006

1.9581095225e+ 001
-5.7622418860e + 007
-4.4631067827e¢+ 00S

4.8968796115e+ 006

1.6560367478e+ 000
1.7971572628e+ 007
4.521 16553460+ 005

5.3595180348e+ 005
~8.98802237360+ 006
1.3598085940¢+ 004

-6.3178341430e+ 002
-5.4126819711e+ 005
2.4444345580¢e+ 007
-7.2500445257 ¢+ 003

-9.6762874788e+ 002
-4.4631067827 e+ 00S
~2.2049931343e+ 007
- 1.4768777916e+ 004

6.7715988886e + 002
4.5211655346¢+ 005
6.59295161010+ 006

- 1.44600262240+ 006 B8.52891487470+003

e, =-2.68674
e,=2.39032
0,=-0.703485,
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2.0549408110e+006
1.35980859400+ 004
-8.5302667268¢+ 006

-4.7628513469e+ 006
-5.5054928856e+ 006
-7.2500445257e+ 003
2.2994803858e + 007

4.237408145%¢+ 006
4.8968796115e+ 006

(117)
-1.4768777916e+ 004

-1.2471449406e+ 006
-1.4460026224¢e+ 006
8.5289148747e+ 003
6.0581677786e+ 006

(115)

(116)

-2.0523358176e+ 007

(118)

(119)




5.2 VALIDATION

The final set of GTF coefficients and scalar constants cal-
culated using the above equations are used to test the model
for a variety of conditions including diverse climates, slab
size and shape, and sensitivity to input data.

5.2.1 8S8IZE

The effect of slab size on the accuracy of the model has
been described in Section 4.5. In summary, the model is
quite accurate for relatively small (144 m? to relatively
large (2025 m?% square slabs giving an error in total
annual energy consumption of less than 3% in both cases.
The model is slightly more accurate overall for the larger
slab based on the percentage of the data within 15% of the
FDM: 97% for the larger slab vs. 89% for the smaller slab.

5.2.2 CLIMATE

The final GTF coefficients and scalar constants were used
with environmental data for Medford OR, Philadelphia PA, and
Phoenix AZ. Plots of the flux and difference for all four
locations are given in Figures 18,19,20 and 21. Table 8
gives numerical data regarding the accuracy of the models.
For Minneapolis, Medford, and Philadelphia, the difference
between the GTF model and the FDM is very nearly zero. 1In
all cases the difference is less than 1 W/m? except for a
few days at the beginning of the annual cvcle. In Phoenix
where the annual mean flux is approximately 1.5 W/m?, an
error of less than 1 Iv/m? can create a significant error

when the actual value of the error is quite small.
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DAILY AVERAGE HEAT FLUX [W/m*2]

DAILY AVERAGE HEAT FLLX [W/m*2]

Figure 18: Flux and Difference -- Minneapolis MN
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Figure 19: Flux and Difference ~- Medford OR
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DAILY AVERAGE HEAT FLUX [W/m*2)

DAILY AVERAGE HEAT FLUX {W/m*)]

Figure 20: Flux and Difference -- Philadelphia PA
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Figure 21: Flux and Difference -~ Phoenix AZ
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Table 8: Results of GTF Models for Various Locations
MODEL LLOCATION MEAN % OF TOTAL | % ERROR TOTAL
FLUX DATA ANNUAL IN ANNUAL
[W/m‘2 WITHIN | ENERGY TOTAL DIFF IN
15% OF | CONSUMP | ENERGY ENERGY
FDM [kWhr] | CONSUMP| CONSUMP
(%] (%) (kWhr]
FDM | Minneapolis| 6.10 | ------ 7716.9 | =—=====| ——=—=-=
GTF Minneapolis 6.19 89 7786.6 +0.9 +69.7
FDM Medford 3.87 | =—=——=~- 4867 .1 | ====== | =—m=—m—=-
GTF Medford 3.86 78 4856.6 ~0.2 -10.5
FDM |Philadelphial 3.89 | ------ 4893.7 | —===== | —=—=--
GTF (Philadelphia| 3.87 78 4863.0 ~0.6 -30.7
FDM Phoenix -1.66 | —~———- -2082.9)| -==-——~]| ——=—m——-
GTF Phoenix -1.46 72 -1832.7{ =-12.0 +250.2

5.2.3 SHAPE

This model was developed assuming a square slab and uses the
circular isotherms which evolve as the result of that geome-
Although it was not expected that this model would

the extent of the

Therefore, parameter sets were con-

try.
adequately model non-square slabs,
inaccuracy was unknown.
structed based on the slab perimeters and areas and using
the above equations. These parameter sets were used to

calculate GTF coefficient matrices and scalar constants, and
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from them, daily average heat fluxes. The results are shown
in Figures 22 and 23. Numerical comparison of these results
to the FDM results for the non-square slabs is given in
Table 9.

As was anticipated, the model does not give good results for
non-square slabs. The form of the errors indicates an inac-
curacy in the calculation of the edge effect. In the summer
when the area effect dominates, the difference between the
FDM and the GTF model is nearly zero. However, as the
ground surface temperature drops and the edge effect becomes
more important, the difference between the FDM and the GTF
model shows an increasing underprediction of the slab heat

loss.

Figure 22: Flux and Difference -- 6 x 24 Rectangle
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Figure 23: Flux and Difference -- 18 x 112 Rectangle
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Table 9: Results of GTF Model for Non-square Slabs
MODEL | SLAB SIZE| MEAN % OF TOTAL |% ERROR| TOTAL
[m°2] FLUX DATA ANNUAL IN ANNUAL
[W/m“2 | WITHIN | ENERGY | TOTAL | DIFF IN
15% OF | CONSUMP| ENERGY | ENERGY
FDM [%]]| [kWhr] | CONSUMP| CONSUMP
(%] [kWhr]
FDM 6 X 24 7.30 | ==——- 9180.2 | —-=-=== | ===--
GTF 6 x 24 5.81 19 7305.2 ~-25.7 -1875.0
FDM 18 x 112 3.19 | -—-—--- 56405.2| ===== | ===--
GTF 18 x 112 2.18 19 38530.3| -31.7 |-17874.9
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5.2.4 SENSITIVITY TO INPUTS

It is important to understand the effect of the accuracy of
the input data on the results of the model particularly if
the required data are not available and approximations must

be made. The most probable approximations are:

(1) substituting daily average outdoor dry bulb tempera-

ture for daily average ground surface temperature (T )

(2) substituting annual average outdoor dry bulb temper-
ature for annual average ground surface temperature (7 ,)

(3) substituting constant indoor air temperature for
daily average floor surface temperature (7,) and daily

average floor edge temperature (7,).

These approximations will be tested for the 12m x 12m slab
with the four climatic conditions and the 45m x 45m slab

with Minneapolis MN climate.

The following runs used the final GTF coefficients and sca-
lar constants. When the approximation for one input data
set was used, the remaining inputs were held identical to
those in Runs 1D and 2D.

GROUND SURFACE TEMPERATURE

Table 10 gives the numerical comparison of the data result-
ing from substituting the daily average outdoor air tempera-
ture for daily average ground surface temperature as the
input at 7,. The error in total energy consumption over the
entire cycle ranges from 17.1 % to 219.5 %. Inspection of
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the graphical representation of the data (Figures 24, 25,
26, 27 and 28) reveals a commen patterr in the error. In
all cases, the largest factor in the error is a positive
linear offset which is greatest in Phoenix where the temper-
ature difference between the air temperature and ground tem-
perature is highest. The larger slab, where the edge effect
is less substantial, shows a much smaller effect of changing

far field temperature.
DEEP GROUND TEMPERATURE

Table 11 and figures 29, 30, 31, 32 and 33 show the results
of using the annual average outdoor air temperature as the
deep ground temperature, 7 ,. Because the annual mean out-
door air temperature is less than the annual mean ground
surface temperature, the calculated heat loss from the slab
is correspondingly higher. Again, the largest component of
the error is the linear offset. The error is small in
moderate and cold climates -- less than 5%. In Phoenix
there is only a slight difference between the annual mean
outdoor air temperature and the indoor air temperature
(0.1C) so that the anrual mean heat flux through the slab is
very small compared to other locations where the temperature
difference is an order of magnitude larger. At the same
time, the difference between the annual mean outdoor air
temperature and the annual mean ground surface is much
greater in Phoenix due for the most part to the increased
solar gain. The consequence of these two conditions is a
much greater effect from this substitution than is seen in
the other climates. In general, however, it gives good

results and even gives a slightly better fit in some cases
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as evidenced by the increase in the percentage of the data
within 15% of the FDM data for small slab in Medford and the

larger slab in Minneapolis.
SLAB TEMPERATURE

In this case a constant value is substituted for the input
data set. This is a convenient substitution and practical
for the many cases where the slab temperature is, in fact,
nearly constant. Table 12 and Figures 34, 35, 36 and 37
give the results of this substitution. In assuming a con-
stant temperature approximately 10% higher than the actual
floor surface temperature a error of roughly 10% is
introduced. This error is primarily a linear shift, which
appears typical of input data set changes. It seems to be
due for tne most part to the difference between the mean
value of the original data set and the mean of the substi-
tuted data. As in all the other cases of input substitu-
tion, the effect is substantially smaller for the larger

s’ bh.
GENERAL COMMENTS

For the most part, the changes described in this section
cause linear shifts of the flux curve. This linear shift
appears to be related principally to the difference between
the mean of the original data set and the mean of the sub-
stituted data. The slight changes in the shape of the input
data curves do not have a great effect on the flux. It is
probable, based on the linearity of the change, that alter-
ing more than one input would result in a linear shift
related to the added effects of the individual changes.
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Table 10:

Results of Substituting Daily Average Outdoor Air

Temperature for Daily Average Ground Surface Temperature

MODEL| LOCAT'N| EDGE MEAN % OF TOTAL % ERROR TOTAL
SIZE FLUX DATA ANNUAL IN ANNUAL

(m] [W/m“2] WITHIN{ ENERGY TOTAL DIFF IN

15% OF| CONSUMP| ENERGY ENERGY

FDM (kWhr] CONSUMP | CONSUMP

(%] (%) [KWhr]

FDM Minn 12 6.13 | ====-- 7716.9 | ==~—=e== | =——————
GTF Minn 12 8.11 21 10197.4 +24.3 +2480.5
FDM |Medford 12 3.87 | -————- 4867.1 | ——==-——= | ~——=—-
GTF {Medford 12 6.30 17 7923.0 +62.8 +3055.9
FDM Phila 12 3.89 | =-——~~- 4893.7 | —===== | ==m===-
GTF Phila 12 5.65 12 7101.6 +45.1 +2207.9
FDM |Phoecnix| 12 -1.66 | ~~=—= -2082.9 | === | ——e——-
GTF |Phoenix]| 12 1.98 2 2488.8 -219.5 | +4571.7
FDM Minn 45 2.50 | =-=—=—~— 44167.7 | ====== | ~—m———-
GTF Minn 45 2.92 47 51711.8 +17.1 +7544.1
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Figure 24:
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Figure 26: Flux and Difference -- 1 ,=1,, -- Philadelphia
PA
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Tablc

11:

Results ot Substituting Annual Average Air Tem-

perature for Annual Averaqge Ground Surface Temperature

44395.6

MODEL] LLOCAT'N| EDGE MEAN t OF TOTAL %t ERROR TOTAL
S1ZE FLUX DATA ANNUAL IN ANNUAIL
[m]) | [W/m 2] |WITHIN| ENERGY TOTAL DIFF IN

1% OF| CONSUMP | ENERGY ENERGY
FDM [kWhr] | CONSUMP | CONSUMP

[%) (%) [ KWhr)

FDM Minn 12 6.13 | =—=m—- 7716.9 | -—=-== | ——-—~=-
GTHE Minn 12 6.2 87 7950, - +2.9 t233.5
FDM |Medford] 12 }.87 | --=-—- 4867.1 | =—==== | -=-——~
CTF |Medford| 12 4.04 79 $083.7 4.5 4216.6
FDM Phila 12 3.89 | --—=--- 4893.7 | -~ | mmmm——-
G'1IF Phila 12 3.99 78 5020.4 12.6 +126.7
FDM | Phoenix| 12 -1.%6 | -—--- -] -2082.9 | —===—— | —-m—~-
GTF |[Phoenixj 12 =-1.03 12 -1299.7 -37.6 +783.2
DM Minn 45 2.50 | =-————~ 41167.7 | -===-= | —————-
GTl Minn 45 2.91 +0.5 +227.9
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Figure 29:
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Figure 30:
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Figure 31: Flux and Difference -- /', = Annual Mean 7/,, --

Philadelphia PA
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Fiqure 32: Flux and Difference -- [/, = Annual Mean /,, --
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Table

12:

Results of Substituting Constant Indoor Air Tem-

perature for Daily Average Slab Surface Temperature

MODEL|LOCAT'N|EDGE| MEAN | % OF | TOTAL |% ERROR| TOTAL
SIZE| FLUX | DATA | ANNUAL IN ANNUAL

[m] |[(W/m*2]|WITHIN| ENERGY | TOTAL |DIFF IN

15% O.'| CONSUMP | ENERGY | ENERGY

FDM | [KWhr] | CONSUMP | CONSUMP

(%] (%] [kWhr)

FDM | Minn | 12 | 6.13 |-~---- 7716.9 | =———== | ——mmmm
GTF | Minn | 12 | 6.74 63 8480.0 | +9.0 | +763.1
FDM |Medford| 12 | 3.87 |-~---- 4867.1 | =——=m== | =—mm——-
GTF |Medford| 12 | 4.27 66 5967.6 | +10.3 |+1100.5
FDM | Phila | 12 | 3.89 |------ 4893.7 | ~=—=== | —=m=m-
GIF | Phila | 12 | 4.29 62 5398.7 | +10.3 |, +505.0
FDM |[Phoenix| 12 | -1.66 |-~-—-- -2082.9 | —=mm== | —-mmee
GTF |Phoenix| 12 | -1.38 66 |-1736.8| -16.6 | +346.1
FDM | Minn | 45 | 2.50 [------ 44167.7 | —===== | ——mmmm
GTF | Minn | 45 | 2.47 99 [43725.3| -1.0 | -442.4
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Figure 34:

DAILY AVERAGE HEAT FLUX [W/m*2]

DAILY AVERAGE HEAT FLUX {W/m"2]

Figure 35:

Flux and Difference -- 7,=7,, —- Minneapolis MN
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Figure 36: Flux and Difference -- T,=T,, -~ Philadelphia PA
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Figure 37: Flux and Difference -- T,=T,, —- Phoenix AZ
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DAILY AVERAGE HEAT FLUX {W/m*2]

Figure 38: Flux and Difference -~ 7,=T,, ~- 45 x 45 --

Minneapolis MN
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6 NETWORK PARAMETERS BASED ON CHARACTERISTIC LENGTH

Bahnfleth [3] reports that heat flux through slabs of sev-
eral different rectangular geometries can be calculated
based on the slab characteristic length (A/P). This leads
to the speculation that it may be possible to define the
network parameters as functions of the soil geometry and
slab characteristic length (A/P), thereby allowing the use

of the model with non-square slabs.

As a crude test of this proposition, empirical models were
developed for slabs of four different configurations: 12m x
12m, 45m x 45m, 6m X 24m, and 18m x 112m. Little attempt
was made at this point to attach geometric significance to
the network parameters, but rather, each parameter set was
adjusted based primarily on the quality of the resulting fit
to each individual set of base case data. A parameter set
was considered acceptable when more than 80% of the result-
ing data were within 15% of the corresponding FDM data and
the error in total annual heat flux was less than 5% with
the Minneapolis MN weather data. It should not be assumed
that these parameter sets are in any way optimal. Once a
set of parameters for each configuration was developed, the
network parameters were compared in an effort to identify

patterns among the four cases (see Table 13).

Several relationships became evident. Aj,. Ay, Iy, and 17,

are of identical or similar value when the area of the slabs
are (nearly) identical. This is a strong indication that
those parameters are functions of the slab area. Corre-
spondingly, .1,. and 1,, appear to be functions of the slab

perimeter. The remaining parameters are assumed to be
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functions of characteristic length, A/P. Pairing the two
square slabs and the two non-square slabs, a line is fit to
each set and the coefficients of the resulting equations

compared. For equations of the form
y=a+bx (114)
the coefficients and variables are shown in Table 14.

It is clear that a single set of linear equations for the
network parameters in terms of the slab area, perimeter or
characteristic length can be written and should give accept-
able results for all four cases. A suggested set of equa-
tions, based on these data is shown in Table 15. Network
parameters are calculated using these data and are shown in
Table 16.

Using the original L matrix and the Al and VV matrices gener-
ated using Table 16, new GTFs and scalar constants are
calculated and QCALC is used to calculate the daily average
heat fiux through the slab using Minneapolis MN climatologi-
cal data. The results are shown in Fiqures 38, 39, 40, and
41. Numerical comparisons are given in Table 17. In all
cased more than 80% of the data are within 15% of the FDM
data, and the error in total energy consumption is less than
10%. It is evident that it is possible to develop a set of
equations for calculating network parameters as functions of
slab area, perimeter and characteristic length which give
good results for a variety of rectangular geometries. The
equations developed for this example should not be consid-
ered universal; a more rigorous method of parameter estima-
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tion should be used to develop a truly generic parameter
set. Nonetheless, this example indicates that such a

procedure should yield good results.

Table 13 Parameter Sets for Empirical Models
12x12 45%x45 6x24 18x112
AREA [m?) 144 2025 144 2016
PERIMETER [m] 48 180 60 260
A/P [m] 3.00 11.25 2.4 7.75
% WITHIN 15% OF 87 95 82 97
FDM
% ERROR IN TOTAL +3.3 -2.7 -0.6 -3.8
ENERGY CONSUMP-
TION
A e 157 608 121 415
Ay, 493 1934 385 1322
Ao 200 650 255 1000
Ayy 800 3000 792 3000
A=Ay 100 1881 90 1760
oy = Ay, 400 1500 600 2600
Ay, = Ay 800 2000 878 2000
P 80 1000 80 1000
L, 320 1850 320 2000
. 100 100 100 100
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Table 14: Equations of Lines Fit to Empirical Data

PARAMETER a b VARIABLE
SQUARE |NONSQUARE| SQUARE |NONSQUARE
Ay, -7.0 ~11 55 55 A/P
Ay, -31 ~35 175 175 A/P
Ape 36 32 3.4 3.7 P
Ays 632 622 1.2 1.2 A
A= A4 -36 -38 .95 .89 A/P
Ay = As, 0 89 8.3 7.35 P
Ay, = Ay 708 792 .64 .60 a
V, 9.6 9.2 .49 .49 a
I, 203 191 .81 .90 a
Vs, 100 100 0 0 CONSTANT
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Table 15: Equations of Common Lines Fit to Empirical Data

PARAMETER a b VARIABLE
A -9.0 55 A/P
A, -33 175 A/P
Ape 34 3.6 P
A s 627 1.2 A
Ale= Ay -36 .9 A/P
Asa= Ay, 0 9 P
Ay, = Asq 750 .6 A

v, 9.4 5 A

v, 203 .9 A

15 100 0 CONSTANT
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Table 16: Parameter Sets Calculated Using Empirical

Equations
12x12 45%x45 6x24 18x112
AREA [m?] 144 2025 144 2016
PERIMETER 48 180 60 260
[m]
A/P [m] 3.00 11.25 2.4 7.75
T/-e 156 610 123 417
11 492 1936 387 1324
L, 207 682 250 970
Ass 800 3057 800 3046
Ap=Ag 94 1787 94 1778
Arg = Age 432 1620 540 2340
Ay, = Asg 836 1965 836 1960
Vv, 81 1022 81 1017
v, 327 2020 327 2011
v 100 100 100 100
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Figure 39: Flux and Difference -- Run 3A
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Figure 40: Flux and Difference -- Run 3B
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Figure 41: Flux and Difference -- Run 3C
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Figure 42: Flux and Difference -- Run 3D
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Table 17: Results of GTF Model Using Parameter Sets Based
on Empirical Equations

MODEL MEAN % OF TOTAL % ERROR TOTAL
FLUX DATA ANNUAL IN ANNUAL
[W/m~2] |WITHIN| ENERGY TOTAL DIFF IN
15% OF| CONSUMP { ENERGY ENERGY
FDM [KWhr] CONSUMP { CONSUMP
(%] [%] [kWhr]
FDM-12x12 6.10 |-=—==- 7716.9 | =—===== | c====-
GTF-12x12 6.57 80 8263.1 +6.6 +546.2
FDM-6x%24 7.30 |====-—- 9180.2 | ~--=== | ====--
GTF-6x24 7.31 81 9190.5 +0.1 +10.3
FDM-45x45 2.50 f[-===-- 44167.7 | ———=== | =—==ee
GTF-45x%x45 2.47 93 43763.6 -0.9 -404.1
FDM-18x112 3.19 [=—==—- 56405.2 | ====== | ====--
GTF-18x112 2.93 86 51765.1 -8.2 -4640.1
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7 UTILIZATION OF THE GTF MODEL FOR ENERGY ANALYSIS

Because of its conceptual similarity to existing energy
analysis programs using transfer function models of building
components, this model is particularly suitable for incorpo-
ration into these programs. When used with these types of
hourly energy analysis programs, the ground network would be
seen as another zone connected to the conditioned space by
an "interzone partition" which would include the slab itself
and the top 0.5m of soil. The surface inner and outer tem-
peratures of the "partition" would be the calculated hourly
slab surface temperature and the GTF model slab center and
edge temperatures (which are equal in this case), respec-
tively. An algorithm for the calculation of ground surface
temperatures (such as TEARTH, developed by Bahnfleth) must
be included in the processing of weather data in order to
provide correct input values for the far-field and deep

ground temperatures.

This model could also serve as part of a stand-alone slab
heat loss program for situations where the daily average
slab surface temperatures are Known or can be reasonably
approximated. For example, Section 5.2.4 showed that sub-
stituting a constant indoor air temperature in place of the
slab surface temperature gave acceptable results for all
locations and both slab sizes. The program would also
require an algorithm for the calculation of undisturbed

ground surface temperatures.
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8 CONCLUSIONS

A simple multiple-input transfer function model of the heat
transfer in the ground beneath a square slab was presented.
It was tested and modified to model both relatively small
slabs where edge effects are strong and larger slabs whose
heat flux is more strongly effected by the flux through the
core. Tested over a broad range of climatic conditions, the
model calculates slab heat flux within 1 h'/m? at all times
and for all locations. This translates to an error of less
than 1% (as compared to the detailed finite difference
model) for moderate and cold climates and 12% for Phoenix
where the total flux is very low. The accuracy of the model
is dependent upon the accuracy of the input data, however,
some reasonable approximations to the necessary input data

can give acceptable results.

The full capability of the model was not tested in this
study. Further work to develop a definition of the network
parameters based on characteristic length could expand the
use of the model to non-square and possibly even non-
rectangular surfaces. Testing, and if necessary, modifica-
tion of the parameter equations to support differential slab
core and slab edge temperatures would allow the model to be
used more effectively for insulation studies where the
placement of the insulation is contingent on the slab to

environment temperature difference.
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APPENDIX A SEEM'S METHOD

Seem's Method for Calculating Transfer Functions
for Multidimensional Heat Transfer

The system is described by a series of equations in state

space formulation:

ER , (A.1)
ST=,2\-+BI/
Q=CN+DU (A.2)
where
X = vector of state variables
/! = vector of known input variables
Q= vector of output variables.
The solution of this system of equations is:
(A.3)

t+6
XNog=e™x, +[ IRy () d T
¢

The input function of the form:
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- A.4
U(T)=U(+T—5—£(U1-6_L/t) ( )

is substituted into the solution equation and the integrals
evaluated leaving the solution equation

Npog= X + (I =T U +TLU oy (A.5)

¢=¢" = the exponential matrix

r=a'e*-ns

4

r =/‘4"(D—B)
z b

The forward shift operator
FUI=U1"6 (A'6)

which relates v,.; to its previous values v,, is used in the

solution equation in order to ''«s¢ the equation entirely in
time t:

(FI-®)X,=(FI,+I", -T U, (A.7)

or

X, =(FI-®) " (FI',+T,-T,)U,.
This equation gives the state variables in terms of the

inputs. It is substituted back into the state output
equation to give the outputs in terms of the inputs:
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Q,=(C(FI-®) "(FI,+1' -1,)+D)U, (A.8)

where

RoF"™ ' +R,F"?+ . +R, ,F+R,_, (A.9)

(FI-®)'= —
Flt+e F" +. . +0,.,F+e,

Substituting, combining common terms of the forward shift
operator, F, and shifting the equation n timesteps back

leaves the transfer function equation

Q,+e,Q,4*...% 2,0, 5= (CR,,+DIU, (A.10)
F(C(Ro(I' =T+ R, I,) e, DI,

F(CR (I =T+ R+ 0, DI o+ ...

SC(R (T =T )+ Ry 1) %0, DI oy

+(CRn—l(rl_‘rz)-"OII‘Z‘D.)I'/[-MS'

More concisely,

n, L (A.11)
Q=) (S,U, ;)= (2,0, )
/=0 1=

where
So=CR,I',+D
S,=C(R,.,(I' -I'))+R,T,)+e,D forl1<j<n-1

S,=CR,_, (I'-1I',))+e,D

Seem's computationally efficient procedure for calculating
numerically significant coefficients uses Leverrier's algo-
rithm with the analytical solution as follows:
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1.1

5‘

series expansion with scaling and squaring

Calculate the matrix row norm of matrix Ab

j.as].= max i la,,8]
1

1StSp je

Find the smallest integer k such that

28> a0].

Divide matrix A6 by 2°.

Calculate the number of terms to keep

L=min {(3].25]+6)v 100)

a6

calculate o?'

2. Calculate I'y and 1,
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1. Calculate the exponential matrix by a truncated power

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)




ry=Aa"'(*-1ns (A.17)

q"(l—i-ﬁ)
BN

fl

r

3. Calculate the S, matrix

So=CR,T,+D (A.18)

4. Calculate the S matrices for 1<j<n-1 where n is the

number of state variables

4.1 Set starting R matrix to the identity matrix

R,.=1 (A.19)

new

4.2 Calculate the scalar constant, e; and the next R

matrix, R,.

Rold = Ruow (A' 20)
Trace($R, )
e,=- n
/
Rneu: = q)Ieold + e/’
4.3 Calculate the next S matrix
‘S‘/'——-"‘:.(Rold(rl_]‘2)."Ienr*wFZ)"'ej.ZD (A'21)

4.4 Iterate 4.2 - 4.3 resetting j = j+1 until j =
n-1
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5. Calculate scalar constant and S matrix for j = n

_ Trace(PRpew) (A.22)
€n n
Sn = CRnow(rl - r2)-"'0119'
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APPENDIX B TRUE BASIC PROGRAM GTF

TRUBASIC PROGRAM GTF
FOR CALCULATING MULTIPLE INPUT GROUND TRANSFER FUNCTION
COEFFICIENTS AND SCALAR CONSTANTS

RECORD,RECSIZE 64

INPUT PROMPT "RUN ID? ": runid$

OPEN #3: NAME "D:\TRUBASIC\INDATA\"&runid$&"GTFs", CREATE
NEWOLD, ORGANIZATION

SET #3: POINTER BEGIN

WRITE #3: DATES,TIMES

WRITE #3: runid$

DIM CONDUCTIVITY(7,7),DENSITY(3),SPECIFIC_HT(3)

DIM AREA(7,7),LENGTH(7,7)

DIM P(4),H(7),A0V(7),VOLUME (3)

DIM DISTANCE (4)

DIM G(7,7),CINV(3),D(4,4),C(4,3),A(3,3),B(3,4)

DIM IDEN(3,3),PHIADJ(3,3),PHI(3,3),PHINEW(3,3),FACTOR(3,3)
DIM ADEL(7,7),AADJ(7,7)

DIM GAMMAL (3,3),GAMMA2(3,3),AINV(3,3),TEMP1(4,4),TEMP2(4,4)
DIM ROLD(10,10),RNEW(10,10),S0LD(10,10),SNEW(10,10),SFINAL(1l
0,10)

DIM TABLE(4,4)

CALL PROPERTIES

CALL MODEL

REM Generic Equation Construction
REM set up equation matrices
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REM set up general configuration
REM for model with 3 state variables and 4 inputs
REM

LET num_state_var=3
LET num_inputs=4

REM

REM Generate thermal resistance matrix G with equation
REM G(i,j) = k(1,3)*A(1,3)/L(1,3)

REM

MAT G=ZER

FOR i=1 to num_state var + num_inputs
FOR j=1 to num_state_var + num_inputs
IF LENGTH(i,j)=0 THEN
LET G(i,j)=0
ELSE
LET G(i,j)=CONDUCTIVITY(i,j)*AREA(i,j)/LENGTH(i,7J)
END IF
NEXT j
NEXT i

REM

REM Generate the matrix of the inverses of the thermal
capacitances

REM  CINV(i) = (DENSITY(i)*SPECIFIC_HT(i)*VOLUME(i)) (-1)
REM

FOR i=1 to num_state_var

LET CINV(i)=(DENSITY(i)*SPECIFIC_ HT(i)*VOLUME(i))"(~1)
NEXT i
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REM

REM Generate the coefficient matrices

REM

REM

REM

REM COEFFICIENT MATRICES OF THE BASIC EQUATIONS
REM

REM dx/dT
REM

REM Q
REM

REM where » is the vector of state variables and

A*x + B*u

i

C*x + D*u

i

REM u is the vector of inputs
REM

REM Matrix A
FOR i=1 to num_state var

FOR j=1 to num_state_var
LET A(i,j)=G(i,3)*CINV(i)

NEXT j
FOR k=1 to num_state var + num_inputs
LET A(i,i) = A(i,i) - G(i,k)*CINV(i)
NEXT k
NEXT i

REM Matrices B and C
FOR i=1 to num_state var

FOR Jj=1 to num_inputs
LET B(i,3))=G(i,Jj+num_state var) *CINV(i)
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LET C(j,1)=G(i,)j+num_state_var)
NEXT j
NEXT i

REM Matrix D

FOR i=1 to num_inputs
FOR j=1 to num_inputs
LET D(i,j)=G(i+num_state_var,j+num_state_var)
NEXT 3
FOR k=1 to num_state var + num inputs
LET D(i,i)=D(i,i)-G(i+num_state_var, k)
NEXT k
NEXT i

CALL TF
CALL STEADY_STATE_SCLN

SUB TF
REM Calculation of Transfer Function

CALL CALCPHI
CALL CALCGAMMAS
CALL CALCSCOEFF
END SUB

SUB CALCPHI
REM Calculate exponential matrix PHI
REM del=size of time step=1 hour
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LET del=1.0
MAT ADEL=del*A

REM Calculate the matrix row norm

FOR i = 1 to num_state_var
LET test=0
FOR j=1 to num_state_var
LET test = test + ABS(ADEL(i,J))
NEXT j
LET matrix_row_norm=MAX(matrix_row_norm,test)
NEXT i

REM Find the smallest integer such that 2"integer is
greater than or equal to
REM the matrix row norm

DO WHILE 2 count<matrix_row norm
LET count=count+1
LoOoP
REM Divide matrix ADEL by 2 integer

MAT AADJ=(2" (-count) ) *ADEL

REM Calculate matrix row norm for adjusted ADEL matrix,
AADJ

FOR i=1 to num_state var
LET test=0
FOR j=1 to num_state_var
LET test = test + ABS(AADJ(i,j))
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NEXT 3j
LET aadj_matrix_row_no.m=MAX(aadj_matrix_row_norm, test)
NEXT i

REM Calculate number of terms to keep

LET how_far=MIN(((3*adj_matrix_row_norm)+6),100)

REM Calculate the exponential of the adjusted matrix, AADJ

MAT IDEN=IDN(num_state_var)
LET num=2
MAT PHIADJ=ZER(UBOUND(A,1l),UBOUND(A,2))

DO WHILE num<=how_far
LET factorial =1
FOR i=num to 1 STEP -1
LET factorial=factorial*i
NEXT i
LET factora=(1l/factorial)
MAT FACTOR=factora*AADJ
FOR j=1 to num-1
MAT FACTOR=FACTOR*AADJ
NEXT j
MAT PHIADJ=FACTOR+PHIADJ
LET num=num+1
LOOP

MAT PHIADJ=AADJ+PHIADJ
MAT PHIADJ=IDEN+PHIADJ

REM Calculate exponential of matrix ADEL from exponential
of matrix AADJ
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FOR i=1 to count
MAT PHINEW=PHIADJ*PHIADJ
NEXT i

IF count=0 THEN
MAT PHI=PHIADJ
ELSE
MAT PHI=PHINEW
END IF

END SUB

SUB CALCGAMMAS
REM Calculate GAMMAl1l and GAMMAZ2

MAT AINV=INV(A)
LET determinant=DET

MAT TEMP1=PHI-IDEN

MAT TEMP1=AINV*TEMP1

MAT GAMMA1=TEMP1*B

MAT TEMP1=(1/DEL) *GAMMA1l
MAT TEMP1=TEMP1-B

MAT GAMMA2=AINV*TEMP1
END SUB

SUB CALCSCOEFF
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MAT TEMP1=IDEN*GAMMA2
MAT TEMP1=C*TEMP1
MAT SOLD=TEMP1+D

MAT WRITE #3:SOLD

MAT TABLE=zer (num_inputs,num_inputs)
MAT TABLE=SCLD
MAT RNEW=IDEN

FOR i=1 to num_state_var
MAT ROLD=RNEW
MAT TEMP1=PHI*ROLD
LET trace = 0
FOR j=1 to num_state_var
LET trace=trace+TEMP1(Jj,3J)
NEXT j
LET e=-trace/i

WRITE #3: e

MAT TEMP1=PHI*ROLD

MAT TEMP2=e*IDEN

MAT RNEW=TEMP1+TEMP2
MAT TEMP1=GAMMA1-GAMMA2
MAT TEMP1=ROLD*TEMP1
MAT TEMP2=RNEW*GAMMA2
MAT TEMP1=TEMP1+TEMP2
MAT TEMP1=C*TEMP1

MAT TEMP2=e*D

MAT SNEW=TEMP1+TEMP2

MAT WRITE #3: SNEW
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NEXT 1

END SUB

SUB PROPERTIES

REM Assignment of soil properties

MAT CONDUCTIVITY = 8.640e4

{J/day-m-K

MAT DENSITY = 1200

lkg/m”3

MAT SPECIFIC_HT = 1200 'J/kg-K

END SUB

SUB MODEL
REM Surface Description

REM Square Surface

LET surface_length=12
LET area_of_surface=surface_length”2 'm”2
LET perimeter of_ surface=4*surface_length m

LET cl-=area_of_surface/perimeter_of_surface

LET DISTANCE(1)=3.5 'm
LET DISTANCE(2)=14.5 !distance to deep ground temp m
LET DISTANCE(3)=12.5 !distance to far field temp m
LET DISTANCE(4)=perimeter_of_surface/(2*pi) t{distance

center to edge m

REM Model
REM Basic Geometry
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LET
LET
LET
LET

LET
LET
LET
LET
LET
LET

P(1)=2%pi*(1.0)/log (DISTANCE(4)/(DISTANCE(4)-1.0))
P(2)=P(1)

P(3)=2*pi*4.5*%cl

P(4)=P(3)

H(1)=DISTANCE (1)
H(2)=DISTANCE (2)-h(1)
H(3)=h(1)
H(4)=DISTANCE(2)-h(3)
H(5)=DISTANCE(2)/2
H(6)=1.0

H(7)=0.1

AOV(1)=P(1)*H(1)

AOV(2)=P(2) *H(2)

AOV(3)=P(3) *H(3)

AOV (4)=P(4)*H(4)
AQV(5)=pi*((area_of_surface/pi)“0.5-1.0) "2
AOV(6)=pi*((area_of_surface/pi) “0.5+2.5+0.15*%cl) "2-

AOV (5)

LET

AOV(7)=pi*((area_of_surface/pi) "0.5+DISTANCE(3)) "2 -

AOV(6) - AOV(5)

LET
LET
LET

REM

MAT
LET
LET
LET

VOLUME (1) =AOV (5) *H (5)
VOLUME (2) =AOV (6) *H (6)
VOLUME (3) =AOV (7) *H(7)

Set up basic geometry MATRICES
AREA=ZER
AREA(1,2) ,AREA(2,1)=A0V(2)

AREA(1,4) ,AREA(4,1)=2A0V(5)
AREA (1,6) ,AREA(6,1)=A0OV (5)
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LET AREA(2,3),AREA(3,2)=A0V(4)

LET AREA(2,6),AREA(6,2)=AOV(6)

LET AREA(2,7),AREA(7,2)=A0V(6)

LET AREA(3,5),AREA(5,3)=A0V(7)

LET AREA(3,6),AREA(6,3)=A0V(7)

LET AREA(4,7),AREA(7,4)=A0V (1)

LET AREA(5,7),AREA(7,5)=A0V(3)

MAT LENGTH=ZER

LET LENGTH(1,2),LENGTH(2,1),LENGTH(4,7),LENGTH(7,4)-
=DISTANCE (4)

LET LENGTH(1,4),LENGTH(4,1),LENGTH(2,7),LENGTH(7,2),LENGTH (3
,5), LENGTH (5, 3)=DISTANCE (1)

LET LENGTH(1,6),LENGTH(6,1),LENGTH(2,6),LENGTH(6,2), LENGTH (3
,6),LENGTH(6,3)=DISTANCE (2)-DISTANCE (1)

LET LENGTH(2,3),LENGTH(3,2),LENGTH(5,7),LENGTH(7,5)-
=DISTANCE (3)

END SUB

SUB STEADY_ STATE_SOLN

REM Calculate the steady-state solution

DIM X(3,1),CBA(4,4),GG(4,4),T(4,1),Q(4,1)

MAT AINV=INV(A)

MAT X=AINV*B

MAT CBA=C*X
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MAT GG=D-CBA
MAT GG=(1/(3600%24))*GG

MAT WRITE #3: GG

END SUB

END
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APPENDIX C TRUBASIC PROGRAM QCALC

TRUE BASIC PROGRAM QCALC
FOR USING MULTIPLE-INPUT GROUND TRANSFER FUNCTIONS
AND SCALAR CONSTANTS TO CALCULATE HEAT FLUX

INPUT PROMPT "“GTF run id? ":gtfrunid$

INPUT PROMPT "LOCATION run id? ":locid$

INPUT PROMPT "RUN NUMBER id? ":numid$

INPUT PROMPT "Number of timesteps to calculate?":endtime

LET runid$=locid$&numid$

LET outname$=gtfrunid$&runid$&"ouT”

OPEN #3:NAME

"D:\TRUBASIC\INDATA\"&gtfrunid$&"GTFS" ,ORGANIZATION
RECORD,RECSIZE 64

OPEN #4:NAME "D:\TRUBASIC\INDATA\"&locid$&"GSTEMP",CREATE
NEWOLD,ORGANIZATION RECORD,RECSIZE 64

OPEN #5:NAME "D:\TRUBASIC\DATA\"&outname$,CREATE NEWOLD,OR-
GANIZATION RECORD,RECSIZE 64

SET #5:POINTER BEGIN

OPEN #9:NAME

"D:\TRUBASIC\INDATA\"&locid$&"BTEMP" ,ORGANIZATION
RECORD,RECSIZE 64

RESET #9:BEGIN

READ #3:gtfrundate$,gtfruntime$,gtfrunid$

DIM SO(4,4),S1(4,4),S2(4,4),53(4,4),E(0 TO 3)

DIM SSTF(4,4)

DIM QSTART(4),TSTART (4)

DIM Q(4,0 TO 3),T(4,0 TO 3)
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DIM QO(4),TO(4),QSAVE(4)

DIM FACTORO (4,0 TO 3),FACTOR1(4,0 TO 3),FACTOR2(4,0 TO
3) ,FACTOR3 (4,0 TO 3),FACTORE(O TO 4)

DIM QDIFF(4),QCONV(4,0 TO 3),PDIFF(4),QDIFFCONV(4)

WRITE #5: outname$,gtfrunid$
WRITE #5:endtime

REM 1Initialize variables
LET E(0)=0.0

LET num_inputs=4

LET num_state_var=3

LET iteration =0

LET er=0.001

LET timestep=0

REM Read in Multiple-input GTF coeffcients and scalar con-

stants

MAT READ #3:S0
READ #3: E(1)

MAT READ #3: S1
READ #3: E(2)

MAT READ #3: S2
READ #3: E(3)

MAT READ #3: S3
MAT READ #3: SSTF
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REM Set up starting temperture and flux matrices

RESET #4: RECORD 2
READ #4:TSTART(2)
READ #9:TSTART (1)
RESET #9:BEGIN

INPUT PROMPT “DEEP GROUND TEMP [K): “:TSTART(3)

LET TSTART(4)=TSTART (1)

RESET #4:RECORD 2

MAT QSTART=SSTF*TSTART

MAT QSAVE=2ER

FOR inp=1 to num_inputs

FOR hr=0 to num_state_var
LET Q(inp,hr)=QSTART(inp)
LET T(inp,hr)=TSTART (inp)

NEXT hr

NEXT inp

MAT Q=(3600%24)*Q

DO

REM If system is not yet initialized,

IF timestep=0 THEN

CALL INITLOOP

LET timestep=timestep+1l
END IF
IF timestep=1 THEN

RESET #4:RECORD 2
END IF
CALL CALCQ
LET timestep=timestep+1
LOOP UNTIL timestep=>endtime

110

initialize system




SUB INITLOOP

REM Initialize system by iterating on first 30 days of data

DO
RESET #4:RECORD 2
LET iteration=iteration+1
FOR in=1 to num_inputs
LET QDIFF(in)=Q(in,0)-QSAVE(in)
IF QSAVE(in)<>0.0 THEN
LET PDIFF(in)=(QDIFF(in)/(ABS(QSAVE(in))))*100
END IF
LET QSAVE(in)=Q(in,0)
NEXT in
LET cycle=0
DO WHILE cycle<=30
LET cycle=cycle+1l
MAT QDIFFCONV=(1/(3600%24)) *QDIFF
FOR inp =1 to num_inputs
FOR hour=num_state_var-1 to 0 step -1
LET Q(inp,hour+1)=Q(inp,hour)
LET T(inp,hour+1)=T(inp,hour)
NEXT hour
NEXT inp
IF END #4 THEN
RESET #4:record 2
END IF
IF END #9 THEN
RESET #9:BEGIN
END IF
READ #4: T(2,0)
LET T(3,0)=TSTART(3)
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REM Set slab edge temperature = slab center temperature

LET TSTART (4)=TSTART (1)
CALL CALCQ

LET TO(1)=T(1,0)

LET TO0(2)=T(2,0)

LET TO(3)=T(3,0)

LET TO(4)=T(4,0)

LET QG(1)=Q(1,0)

LET Q0(2)=Q(2,0)

LET Q0(3)=Q(3,0)

LET Q0(4)=Q(4,0)

MAT QO=(1/(3600%24))*Q0

LOOP

REM If system does not initialize in 200 iterations, termi-

nate initialization

IF iteration > 200 THEN
EXIT DO
END IF
LOOP UNTIL ABS(PDIFF(1))<er AND ABS(PDIFF(2))<er AND
ABS (PDIFF(3))<er AND ABS(PDIFF(4))<er AND iteration>5
END SUB

SUB CALCQ

IF timestep>0 THEN
FOR inp =1 to num_inputs
FOR hour=num_state_var-1] to 0 step -1
LET Q(inp,hour+1)=Q(inp, hour)
LET T(inp,hour+1)=T(inp, hour)
NEXT hour
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LET Q(inp,0)=0.0
NEXT inp

IF END #4 THEN
RESET #4:record 2

END IF

IF END #9 THEN
RESET #9:BEGIN

END IF

READ #4: T(2,0)

LET T(3,0)=TSTART(3)

READ #9: T(1,0)

LET TSTART(4)=TSTART (1)

END IF

MAT FACTORO=SO0*T

MAT FACTOR1=S1*T

MAT FACTOR2=S2*T

MAT FACTOR3=S3*T

LET factor_format$ = P S T 2 T 122 A
LET gsum=0.0

FOR L=1 TO 4

LET FACTORE(L)=E(1)*Q(L,1)+E(2)*Q(L,2)+E(3)*Q(L,3)

LET Q(L,0)=FACTORO(L,0)+FACTOR1 (L, 1)+FACTOR2 (L, 2) +FACTOR3
(L, 3)-FACTORE (L)

LET gsum=gqsum+Q(L,0)
NEXT L

MAT QCONV = (1/(3600%24))*Q
LET gsumconv=(1/(3600*24)) *QSUM
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IF timestep=0 THEN

LET g formatS="-~4.##4444844"""" v
ELSE

WRITE #5:QCONV(1,0),QCONV(2,0),QCONV(3,0),QCONV(4,0)
END IF

END SUB

END
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